GNU Assembly Language Introduction worksheet:
What is a label in Assembly Language and how is it used?
Go to: https://en.wikipedia.org/wiki/Label_(computer_science)

Suffixes to Commands:
Go to: https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Operation_Suffixes
	suffix:
	meaning:

	b
	

	s
	

	w
	

	l
	

	q
	

	t
	

What purpose does the suffix serve?

Are you required to use a suffix?

If you use the command without a suffix what happens?

Commands:
Go to: https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Quick_reference
[bookmark: _GoBack]and http://cs.neiu.edu/fporps/2021Fall/cs301/CS301-08machine-basics.pdf (note: change 2021Fall to current semester)
	instruction with sample
	meaning/how it works:

	movq %rax, %rbx
	

	movq $123, %rax
	

	movq %rsi, -16(%rbp)
	

	subq $10, %rbp
	

	cmpl %eax %ebx
	

	jmp location
	

	je location
	

	jg, jge, jl, jle, jne, …
	

	leaq
	

	salq
	

	addq
	

	subq
	

	imulq
	

	sarq
	

	shrq
	

	xorq
	

	andq
	

	orq
	

	incq
	

	decq
	

	negq
	

	notq
	

	*
	

*These are most common, but you can search the web for more (not required).

Registers and storage (memory) addressing: (This is your workspace in assembly language)
Go to: https://cs61.seas.harvard.edu/site/2018/Asm1/
Complete the register reference chart
General Purpose Registers:
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Special Purpose Registers:
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Sample Code To Run (2 programs – copy, paste, and run individually):
exit program to “see” output Note: # used to mark a COMMENT (invisible ink) in Assembly Language
#PURPOSE:	Simple program that exits and returns a
#			status code back to the Linux kernel
#
#INPUT: 	none
#
#OUTPUT:	returns a status code. This can be viewed
#			by typing
#
#			echo $?
#
#			after running the program
#
#VARIABLES:
#			%rax holds the system call number
#			(this is always the case)
#
#			%rbx holds the return status
#
.section .data

.section .text

.globl _start
_start:
movq $1, %rax # this is the linux kernel command
 # number (system call) for exiting
 # a program

movq $0, %rbx # this is the status number we will
					# return to the operating system.
					# Change this around and it will
					# return different things to
					# echo $?
int $0x80 			# this wakes up the kernel to run
					# the exit command

max program This program finds the maximum number of a set of data items.

#PURPOSE:	This program finds the maximum number of a
#			set of data items.
#
#VARIABLES: The registers have the following uses:
#
%rdi - Holds the index of the data item being examined
%ebx - Largest data item found
%eax - Current data item
#
The following memory locations are used:
#
data_items - contains the item data. A 0 is used
to terminate the data
#
.section .data

data_items:		#These are the data items
.int 3,67,34,222,45,75,54,34,44,33,22,11,66,0

.section .text
.globl _start
_start:
movq $0, %rdi 					# move 0 into the index register
movl data_items(,%rdi,4), %eax 	 # load the first byte of data
movl %eax, %ebx 				# since this is the first item, %rax is
						# the biggest
start_loop: 					# start loop
cmpl $0, %eax 					# check to see if we’ve hit the end
je loop_exit
incq %rdi 					# load next value
movl data_items(,%rdi,4), %eax
cmpl %ebx, %eax 				# compare values
jle start_loop 					# jump to loop beginning if the new
								# one isn’t bigger
movl %eax, %ebx 				# move the value as the largest
jmp start_loop 					# jump to loop beginning
loop_exit:
%rbx is the return value, and it already has the number
movq $1, %rax 					#1 is the exit() syscall
int $0x80
