
CS 200 Sections 02 & 04 Spring 2013

Week #9: Top 3 Lessons Learned

1. Computer read the code one by one! Therefore:

System.out.print(a++); // first display a, then increment

System.out.print(++a); // first increment, then display incremented value

Important! a stays incremented!

2. One more time, operator precedence is extremely important.

http://www.neiu.edu/~faporps/2013Spring/cs200/00OperatorPrecedenceTable.pdf

AND is always before OR

3. Value can be incremented or decremented inside of if ()

if(d == c--) // first the value not decremented is compared to d, then decremented.

M. Mardosz

What I learned on 3/7/13 was before starting any flowchart you must read the question

carefully and write down what is given and what its asking.

If data is being entered from the user create a valid/invalid data decision structure.

When reading any question or problem, follow the direction given to you and write down the

steps the computer will be running before coding the program.

When creating a valid/invalid decision structure problem, write down which one is valid and

invalid. Example: if (Input years > 1852) { //valid System.out.print ("This is true"); } else {

//invalid System.out.print ("This is false"); } let say that the input years are 1920s,1873s, and

1840s. 1920s and 1873s are valid data because they are greater than 1852. 1840 is invalid

because its less than 1852.

P. Khuu

http://www.neiu.edu/~faporps/2013Spring/cs200/00OperatorPrecedenceTable.pdf

1. When code tracing, you should first look at the variables that are declared

and write them out vertically on the side, so that you can keep track and change the

values as you need to.
2. When tracing, be sure to look carefully for semicolons followed by another

command/statement on the same line. An error can easily be made in stating that the

statement is everything on the same line when there are actually two commands on the

same line.

3. In addition to tracing, remember to put a dot on the next line if you have

System.out.println() to remind yourself that the next statement of output needs to go

on the next line.

T. Blanchard

Three things that I learned on 3/05/2013 are that it is important to pay attention to the

placement of the increment operator and the decrement operator. If they are placed in

front of a number, you have to change that value before you continue with the expression.

If they are placed after a number, you have to change that value after it has been used in

the expression.

Second, you have to pay close attention when you are code tracing. You have to keep track of the

current value of a variable because the value of a variable can change as you proceed through the

code.

Third, you also have to pay attention to the methods println and print. When you are code

tracing, you have to pay attention to these methods so that you know if you are going to start on

a new line or not.

 J. Gomez

When tracing a problem, write the variables vertically so you can see clearly the values

stored in each variables.

When you change a variable's value, cross it off in a way that lets you see

what you have crossed off.

Always put your finger on the line you are working

on!

When the if statement is true make sure you cross off the else statement that you don't need

to do

Always write the value that is assigned to the variable when looking at an if/else statement

S. Malik

1.) prefix operators ++, -- come before the variable and tells the computer to add/subtracts

one to the variable's value, and if prompted to, show it on the output. At the other end of

the spectrum we have the postfix operators that come AFTER the variable, it means the

computer uses the original variable value FIRST in the statement, THEN it increases or

decreases the value by 1.

2.) An if and an else statement can one process ONE statement when no {} are used to

compound them. When tracing on the final, make sure to see if the statements are in brackets

for the if and else statements; if not then processed in the linear fashion and do the next

statement.

3.) Remember the order of precedence!! Also make sure you FOLLOW the direction of the

operator’s associativity (r to l or l to r), not doing so WILL lead to a wrong answer so

always double check it.

E. Herring

A few of the lessons learned were from tracing code:
1. Take the variables and write them on their own line. This way, you can make the changes to the
variables as you trace the code and it will be easier to read.
Example:
A =1
B =2
etc.

2. When tracing the code, write T or F above the logical comparisons so you can keep track of whether
the evaluation is true or false.

3. Read through each line to make sure you don’t miss a new line character. You’ll need to show that in
the box provided.

E. Zacharias

1. To solve a problem with code tracing, we go line by line to find the results.

2. If you want to include more than one statement in each branch, simply

enclose the statements in braces { }. Several statements enclosed within braces are

considered to be one larger statement. This is called compound statements.

3. Using = Instead of = = to Test for Equality.

The operator = is the assignment operator. Although this symbol means

equality in mathematics, it does not have this meaning in Java. If you write if

(x = y) instead of if (x == y) to test whether x and y are equal, you will get

a syntax error message.

D.Mirdadi

